小2算数「たし算とひき算の関係」指導アイデア《加法の逆思考の問題をテープ図や式に表して解決する》

特集
文部科学省教科調査官監修「教科指導のヒントとアイデア」
小2算数「たし算とひき算の関係」指導アイデア

執筆/上尾市立原市南小学校教諭・村井幸太
監修/文部科学省教科調査官・笠井健一、浦和大学教授・矢部一夫

年間指導計画 たし算とひき算の関係

単元の展開

第1時 テープ図の意味と表し方を理解し、合併の場面をテープ図と式で表す。

第2時 増加の場面をテープ図に表し、立式して加法と減法の相互関係の理解を深める。

第3時(本時)加法の逆思考の問題について、数量の関係をテープ図や式に表して解決する。

第4時 減法逆の減法の問題について、数量の関係をテープ図や式に表して解決する。

第5時 減法の逆思考の問題について、数量の関係をテープ図や式に表して解決する。

第6時 基本的な学習内容を理解しているか確認し、それに習熟する。

本時のねらい

加法の逆思考の問題について、数量の関係に着目し、場面をテープ図に表して、演算決定できる。

評価規準

加法の逆思考の問題場面について、数量の関係に着目して、テープ図に表して立式し、説明している。

本時の展開

前回までに、赤と青のおはじきの数をテープ図に表したり、テープ図を見て、折り紙の数をたし算やひき算で求めたりしてきました。今回も先生はある場面を考えてきました。さっそくテレビに映すので見てみましょう。(大型モニタに問題を提示)

図表1

あれ、落書きされているところがあるよ。

数が1つ見えないようになっています。

本当だ。らくがきくんに数を塗りつぶされてしまいました。おや、さらに最後のところにらくがきくんから1文書き加えられていますね。らくがきくんからの挑戦ですね。この問題、何を求めるのでしょうか。

らくがきくんに消されたところの数を考えます。

今日集めた空き缶の数を求めます。

なるほど。どんな式を立てればいいのでしょうか。

「合わせて」と書いてあるから、たし算で求められると思います。

確かに合わせてと書いてあるけれど、12+30で求められるのかなあ。

ひき算で求められると思うのだけど、「合わせて」と書いてあるからなぁ……。

前の時間に習ったテープ図に書けばいいと思います。でも、今日集めた空き缶の数が分からないからどのようにテープ図に書くんだろう。

では、テープ図や式を使って「今日集めた空き缶の数」を求める計算を考えていきましょう。

学習のねらい
どんな計算になるのか考え、説明しよう。

見通し

「合わせて」と書かれているから、たし算を使って計算すればいいと思う。

「全体」と「部分」に注目して、テープ図で表して考えられないかなあ。

「昨日集めた空き缶の数」「今日集めた空き缶の数」「全体の数」をテープ図に書けば、式で求められると思う。

自力解決の様子

A つまずいている子
・テープ図を書くことができない。
・「合わせて」と問題に書いてあることから、たし算を立式しようとしている。


B 素朴に解いている子
・「今日集めた数」はひき算(30-12)で求めればよいことが分かる。
・テープ図で場面を表そうとしている。


C ねらい通り解いている子
・昨日集めた数(部分)と集めた数(全体)に着目してテープ図を書き、その図を基に30-12を立式し、答えを求めている。
・なぜ、その式になるのか、テープ図と対応させながら「部分」「全体」という言葉を用いて説明することができる。

学び合いの計画

子供は今まで、「合わせて」「増えると」をたし算、「残りは」「違いは」をひき算にするなど、文中のキーワードを基に演算決定をすることが少なくありませんでした。本時でも、「合わせて」というキーワードからたし算で求めればよいと考える子供も少なからずいるものと予想されます。ここでは、場面から正しくテープ図を用いて数量関係を明らかにし、それを基に演算決定することを理解させるようにしましょう。

子供たちは場面から「昨日集めた数」や「今日集めた数」(部分)、「合わせた数」(全体)など、どの大きさを求めるのか把握することから始まります。また、前時までに場面をテープ図に表すことで、「部分」と「全体」それぞれの数量の関係を正しく捉えられるという経験をしています。

学び合いでは、全体でテープ図を完成させていきます。そして、場面と対応させながら、テープ図で「部分」や「全体」は「昨日集めた数」「今日集めた数」「合わせた数」のどれに当たるのか、求めたい未知数は「部分」のなかでも「昨日集めた数」と「今日集めた数」のどちらに当たるのか、確認をしながらつくり上げることが大切です。

さらに、「今日集めた数(部分)」を求めるときにはひき算を使うという知識は前時で学習していますが、なぜひき算になるのか、テープ図と式を対応させながら説明させていくことが大切です。

Bの子供は、式は立式できるが図と対応させて説明できないことが多いです。その場合、Cの子供1人にすべて説明させるのではなく、Cの子供のやり方を1つずつ説明させて全体で確認していくというステップをていねいに行うことにより、Bの子供もより分かりやすい説明の仕方に気付くように教師がうまく学び合いを進めていくことが大切です。

さらに、より分かりやすく説明するにはどのようにすればよいかを子供に考えさせながら、練り上げを行っていくこともとても効果的です。

ノート例

A つまずいている子

ノート例1

イラスト/横井智美

学校の先生に役立つ情報を毎日配信中!

クリックして最新記事をチェック!
特集
文部科学省教科調査官監修「教科指導のヒントとアイデア」

授業改善の記事一覧

雑誌『教育技術』各誌は刊行終了しました