小2算数「かけ算⑶」指導アイデア《9の段の九九の構成を通して、答えの増え方や交換法則に気付く》
執筆/埼玉県三郷市立幸房小学校教諭・佐藤翔馬
監修/文部科学省教科調査官・笠井健一、浦和大学教授・矢部一夫
目次
単元の展開
第1時 6の段の九九を構成する。乗数が1増えると、積は被乗数分だけ増えることを理解する。
▼
第2時 6の段の九九の呼称を知り、唱える。6の段の九九を用いて、問題を解決する。
▼
第3時 7の段の九九を構成する。7の段の九九でも、乗数が1増えると、積は被乗数分だけ増えることを理解する。
▼
第4時 7の段の九九の呼称を知り、唱える。7の段の九九を用いて、問題を解決する。乗数の交換法則が成り立つことに気付く。
▼
第5時 8の段の九九を構成する。8の段の九九の構成を通して、答えの増え方や交換法則に気付く。
▼
第6時 8の段の九九の呼称を知り、唱える。8の段の九九を用いて、問題を解決する。
▼
第7時(本時)9の段の九九を構成する。9の段の九九の構成を通して、答えの増え方や交換法則に気付く。
▼
第8時 9の段の九九の呼称を知り、唱える。9の段の九九を用いて、問題を解決する。
▼
第9時 1の段の九九を構成する。1の段の九九の呼称を知り、唱える。1の段の九九を用いて、問題を解決する。
▼
第10時 問題文の仕組みを読み取って加法や減法・乗法の演算決定をし、乗法の理解を深める。具体物の操作を基に、解き方や絵や図、式や数字、言葉を使って分かりやすく説明する。
▼
第11時 学習内容の定着を確認するとともに、数学的な見方・考え方についてふり返る。
本時のねらい
9の段の九九の構成の仕方を考え、説明することができる。
評価規準
乗法の意味や性質を用いて、9の段の九九の構成の仕方を考え、説明している。
本時の展開
みなさん、今までの学習で何の段をつくってきましたか。
2~8の段です。
そうですね。2~8の段を一緒につくってきました。どのようなきまりを使ってつくりましたか。
例えば、6×3は6+6+6=18というように、たし算を使ってつくりました。
6の段では6×1=6、6×2=12と、答えが6ずつ増えるきまりを使ってつくりました。
8の段の答えは、5の段の答えと3の段の答えを足した数になっているというきまりも使えました。
掛けられる数と掛ける数を入れ替えても、答えが同じというきまりも使えました。
かけ算のきまりを使って、いろいろな段の九九をつくることができましたね。それでは、まだ一緒につくっていない段は何の段でしょうか。
1の段です。
9の段です。
そうですね。あと2つの段をつくることができれば、九九表が完成しそうですね。今日は、今まで学習したきまりを使って9の段をつくっていきましょう。
9のだんの九九をくふうしてつくりましょう。
では、9の段を「くふうしてつくる」とはどういうことでしょうか。
今まで学習したことを使って考えるということだと思います。
今まで使った作戦やきまりを使って考えることだと思います。
そうですね。では、今までの学習を生かして、9の段を一緒につくっていきましょう。
9の段の九九のつくり方を考えよう。
見通し
掛ける数が1増えると、かけ算の答えが掛ける数分増える、「ふえふえさくせん(累加)」が使えそう。
9×2と2×9は答えが同じという「はんたいさくせん(交換法則)」が使えそう。
表を見て、9の段を分けて考える「わけわけさくせん(分配法則)」を使えば分かりそう。
自力解決の様子
A つまずいている子
・9の段の九九の答えは求められたが、説明することができないでいる。
9×1=9 9×2=18 9×3=27 ……
B 素朴に解いている子
・9の段の九九の構成を、累加を使って考えている。
9×1=9
9×2=18 9+9
9×3=27 9+9+9 ……
C ねらい通り解いている子
・交換法則
9×2の答えは、2×9=18と同じになるので18です。
9×3の答えは、3×9=27と同じになるので27です。……
・かけ算のきまり
掛ける数が1増えると、答えは9ずつ増えることを使いました。
9×1=9
9×2=18 9+9
9×3=27 18+9 ……
・分配法則
9×9の答えは、5×9の答えと4×9の答えを足せば求めることができます。
学び合いの計画
9の段では、今まで学習したかけ算の意味や性質を用いてつくり上げることが大切です。
自力解決の場面では、子供は今までの学習を基に、自分なりのやり方で9の段を構成していきますが、手が止まり、自分で考えをまとめることが難しい子供には、9の段のアレイ図をヒントカードとして渡したり今までのきまりが使えないか助言したりするなど、ていねいに支援することが大切です。
また、アレイ図を端末上に表示してきまり(交換法則・分配法則)を確認させたり、今までの学習をふり返ることができるページを配信したりすることで、自分で考えをまとめられるように促すことも有効です。
また、乗法の性質を使って式のみで考えている子供には、九九表やアレイ図を用いるように声をかけ、式と図の関連性に気付かせるようにすると九九への理解が深まるでしょう。
比較・検討の場面では、累加の考えに固執しないようにすることが大切です。8の段までに学習した乗法の性質や交換法則・分配法則の有用性が分かるように話合いを展開し、今まで習ってきた九九と同じように、かけ算の意味や性質を使えば9の段をつくることができるというまとめにつなげていくことが大切です。
ノート例
A つまずいている子
B 素朴に解いている子
全体発表とそれぞれの考えの関連付け
どのように9の段の九九をつくりましたか。
イラスト/横井智美